2.5-D稳定电流场h-自适应有限元的后验误差分析  被引量:2

Posteriori error estimation analysis of the h-adaptive finite element in the 2.5-dimensional direct current field

在线阅读下载全文

作  者:郑洲顺[1] 黄辉[1] 张继锋[1] 郑珊[1] 岳书霞[1] 

机构地区:[1]中南大学数学科学与计算技术学院,长沙410083

出  处:《地球物理学进展》2009年第2期663-667,共5页Progress in Geophysics

基  金:国家高科技发展计划项目(863-2006AA06Z105;2007AA06Z134)资助

摘  要:本文针对2.5-D稳定电流场问题,用Galerkin方法推导了其变分问题;基于残值推导了h-自适应有限元方法求解2.5-D稳定电流场边值问题的后验误差公式,阐述了2.5-D稳定电流场的基于超收敛恢复的后验误差估计方法.为2.5-D稳定电流场h-自适应有限元方法的后验误差的实现奠定了理论基础.The forward modeling of the 2.5-Dimension direct current field finite element is widely used because of it's small computational cost and high practicality. The traditional finite element can not ensure the accuracy of forward modeling numerical simulation. The adaptive finite element can avoid this problem through posteriori error analysis.Posteriori error analysis plays a key role in the adaptive finite element. In this paper, the variation of boundary value problems of the 2.5-dimensional direct current field is derived through the Galerkin method. Based on the variation, some estimators based on residual and gradient recovery are derived. It provides the basis for the realization of the hadaptive finite element method for the 2.5-dimensional direct current field problem.

关 键 词:自适应有限元 后验误差 残值 梯度恢复 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象