基于支持向量机(SVM)的稻纵卷叶螟危害水稻高光谱遥感识别  被引量:28

Hyperspectral Recognition of Rice Damaged by Rice Leaf Roller Based on Support Vector Machine

在线阅读下载全文

作  者:石晶晶[1] 刘占宇[1,2] 张莉丽[3] 周湾[3] 黄敬峰[1,2] 

机构地区:[1]浙江大学农业遥感与信息技术应用研究所,浙江杭州310029 [2]浙江省农业遥感与信息技术重点实验室,浙江杭州310029 [3]杭州市植保土肥总站,浙江杭州310020

出  处:《中国水稻科学》2009年第3期331-334,共4页Chinese Journal of Rice Science

基  金:国家863计划资助项目(2006AA10Z203);国家科技支撑计划资助项目(2006BAD10A01)

摘  要:对健康水稻叶片以及受稻纵卷叶螟危害后的水稻叶片进行了室内光谱的测定及分析。对430~530 nm和560~730 nm波段采用连续统去除的方法,分别提取了波深、斜率参量作为径向基核函数支持向量机的输入变量,利用LIBSVM软件包构建叶片高光谱识别模型。当参数γ和惩罚系数C分别取0.25和1时构建的径向基支持向量机模型的分类性能最佳,识别精度达100%。研究结果为实时水稻病虫害的早期监测以及田间管理提供了一定的理论基础。The spectra of healthy leaves and leaves damaged by the rice leaf roller were measured and analyzed by the method of continuum removal. In the range of 430-530 nm and 560-730 nm, the band depth and slope were extracted. Then the extracted parameters were chosen as the input vector of the support vector machine (SVM) to design a support vec tor classifier for the recognition of the leaves damaged by the rice leaf roller. The results confirmed that the classification precision of the SVM with radial basis function(RBF) kernel function was as high as 100K when 7 and C were 0.25 and 1, respectively. This could provide theoretic basis for farmers to recognize the rice leaf damaged by the rice leaf roller on-time and control it effectively.

关 键 词:支持向量机 稻纵卷叶螟 高光谱遥感 连续统去除 水稻 虫害 

分 类 号:S435.112.1[农业科学—农业昆虫与害虫防治]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象