检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨维斌[1] 房斌[1] 尚赵伟[1] 徐大园[1]
出 处:《计算机应用》2009年第6期1696-1698,共3页journal of Computer Applications
基 金:重庆市自然科学基金资助项目(2007BA2003)
摘 要:进行脱线笔迹鉴别时,笔迹特征只能从手写体图像中提取,且无法获取书写时的动态信息,导致了脱线笔迹鉴别的正确率不是很高。为了进一步提高脱线手写体笔迹鉴别的正确率,提出基于复小波的GGD模型方法对笔迹进行鉴别。与传统小波GGD模型方法比较,复小波GGD模型方法具有时移不变性和良好的方向分析能力,在提取纹理特征方面更有效。实验结果表明,该方法在鉴别正确率上有很大的提升。A challenging problem of off-line text-independent writer identification is that plenty of dynamic writing information with the handwriting images can not be extracted as writing features, this results in high error rate in off-line writer identification. In order to enhance the performance of off-line writer identification, a complex wavelet-based Generalized Ganssian Distribution (GGD) method was proposed. Compared with the traditional wavelet-based GGD method, the novel method is more efficient on texture extraction due to its time-invariant features and good directional analysis. Experimental results show that the proposed method achieves a better performance of writer identification.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.129.247