检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力系统保护与控制》2009年第10期33-38,共6页Power System Protection and Control
基 金:国家自然科学基金项目(50807016);广东省自然科学基金博士启动基金项目(06300091)~~
摘 要:AGC是一个动态多级决策问题——马尔可夫决策过程(MDP),应用强化学习算法可有效地实现控制策略的在线学习和动态优化决策。引入Q学习算法作为强化学习核心算法,将CPS值看作包含AGC的电力系统"环境"所给的"奖励",依靠奖励值Q函数与CPS控制动作形成的闭环控制结构实现在线学习。学习目标是使CPS控制动作从环境获得的长期积累奖励值最大,从而快速自动地在线优化CPS控制系统的输出。仿真研究显示,引入强化学习自校正控制后显著增强了整个AGC系统的鲁棒性和适应性,有效提高了CPS考核合格率。The automatic generation control (AGC) problem is a stochastic multistage decision problem, which can be modeled as a Markovian Decision Process (MDP). The paper introduces the Q-learning method as the core algorithm of reinforcement learning (RL), and regards the CPS values as the rewards from the interconnected power systems. By regulating a closed-loop CPS control rule to maximize the total reward in the procedure of on-line learning, the optimal CPS control strategy can be gradually obtained. The case study shows that after adding the RL control, the robustness and adaptability of AGC system is enhanced obviously and the CPS compliance is ensured. This work is supported by National Natural Science Foundation of China(No.50807016) and Natural Science Funds of Guangdong Province (No. 06300091).
关 键 词:强化学习 Q学习算法 自动发电控制 CPS标准 自校正控制
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104