Electronic properties of hydrogen- and oxygen-terminated diamond surfaces exposed to the air  被引量:1

Electronic properties of hydrogen- and oxygen-terminated diamond surfaces exposed to the air

在线阅读下载全文

作  者:刘峰斌 汪家道 陈大融 颜大运 

机构地区:[1]State Key Laboratory of Tribology,Tsinghua University

出  处:《Chinese Physics B》2009年第5期2041-2047,共7页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No 50675112);National Basic Research Program of China(Grant No 2007CB707702);the China Postdoctoral Science Foundation(Grant No 20070410515)

摘  要:The electronic properties of hydrogen- and oxygen-terminated diamond surfaces exposed to the air are investigated by scanning probe microscopy (SPM). The results indicate that for the hydrogen-terminated diamond surface a shallow acceptor above the valence-band-maximum (VBM) appears in the band gap. However, the oxygen-terminated diamond film exhibits a high resistivity with a wide band gap. Based on the density-functional-theory, the densities of states, corresponding to molecular adsorbate in hydrogenated and oxygenated diamond (100) surfaces, are studied. The results show that the shallow acceptor in the band gap for the hydrogen-terminated diamond film can be attributed to the interaction between the surface C H bonding orbitals and the adsorbate molecules, while for the oxygen-terminated diamond film, the interaction between the surface C-O bonding orbitals and the adsorbate molecules can induce occupied states in the valence-band.The electronic properties of hydrogen- and oxygen-terminated diamond surfaces exposed to the air are investigated by scanning probe microscopy (SPM). The results indicate that for the hydrogen-terminated diamond surface a shallow acceptor above the valence-band-maximum (VBM) appears in the band gap. However, the oxygen-terminated diamond film exhibits a high resistivity with a wide band gap. Based on the density-functional-theory, the densities of states, corresponding to molecular adsorbate in hydrogenated and oxygenated diamond (100) surfaces, are studied. The results show that the shallow acceptor in the band gap for the hydrogen-terminated diamond film can be attributed to the interaction between the surface C H bonding orbitals and the adsorbate molecules, while for the oxygen-terminated diamond film, the interaction between the surface C-O bonding orbitals and the adsorbate molecules can induce occupied states in the valence-band.

关 键 词:hydrogen-termination oxygen-termination electronic properties diamond film 

分 类 号:O472.1[理学—半导体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象