机构地区:[1]Department of Mechanics Science and Engineering, Fudan University, Shanghai 200433, China [2]Zhongshan Hospital, Shanghai 200032, China [3]Eye and ENT Hospital of Fudan University, Shanghai 200031, China
出 处:《Chinese Journal of Biomedical Engineering(English Edition)》2009年第1期9-20,共12页中国生物医学工程学报(英文版)
基 金:National Basic Research Program(973 Project);grant number:2005CB523302;Shanghai Educational Committee Distinguished Disciplines;grant number:B112
摘 要:Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on response (MR) Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow, and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion :The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic response (MR), tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow,and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion:The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.
关 键 词:renal blood distribution mathematical modeling myogenic response ( MR ) tubuloglomerular feedback (TGF)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...