检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张玲[1] 欧阳洁[1] 郑素佩[1] 张红平[1]
出 处:《工程数学学报》2009年第3期480-488,共9页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金重大项目(10590353);陕西省自然科学基金(2005A16)
摘 要:本文对Maxwell流体小尺度不可压缩周期流,通过多尺度分析获得控制扰动流的大尺度均场方程和紧凑形式的四阶有效张量。对稳态平行流,通过对均场方程中均匀化算子的特征值进行理论分析,得到控制大尺度扰动流稳定性的临界粘性系数。然后对不同参数和初始条件,采用基于同位网格改进的SIMPLEC算法对均场方程和大尺度扰动流控制方程进行数值模拟,验证了多尺度理论预测的正确性,从而说明了本文所用多尺度分析方法和数值算法的有效性和可靠性。For the incompressible small-scale periodic flow of a Maxwell fluid, the mean-field equations which govern the transport of large-scale perturbations were obtained by the multiscale analysis. A general mathematical formalism was developed to determine the effective tensor. In general, the effective tensor is a fourth-order tensor, for which a compact representation was provided. The exact explicit expressions of the effective tensor were given for the parallel time-independent flow. For the Kolmogorov flow, the critical value of viscosity for stabilities of large scale perturbations was obtained by theoretical analyses of the eigenvalues of the homogenized operator in the mean-field equations. Then, the mean-field equations and the original linearized equations with respect to different parameters and initial conditions were simulated by using the modified SIMPLEC (Semi-Implicit Method for Pressure Linked Equations, Consistent) algorithm in the collocated grid system. The comparisons between the direct numerical simulations and the multiscale theoretic predictions demonstrated that the multiscale analysis and the numerical algorithm are effective and credible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.70.182