充液管道流固耦合模型的时空二阶Godunov型解  被引量:2

Godunov-type Solutions with Second Order in Time and Space for Fluid Structure Interaction Model of Liquid-filled Pipeline

在线阅读下载全文

作  者:陈明[1] 蒲家宁[1] 

机构地区:[1]解放军后勤工程学院,重庆400016

出  处:《中国机械工程》2009年第11期1347-1351,共5页China Mechanical Engineering

基  金:国家自然科学基金资助项目(50175108)

摘  要:基于有限体积法建立了管道流固耦合模型的数值离散格式,采用时间和空间均为二阶精度的MUSCL-Hancock方法计算界面上的数值通量,引入斜率限制器构建了高分辨率的TVD格式。在计算边界单元时,通过建立虚拟单元的概念,实现了整个计算区域的二阶精度求解。实例验证表明:该方法计算精度高,无虚假的数值振荡,对库朗数灵敏度低,具有良好的稳定性。Based on finite volume method, discrete scheme of fluid structure interaction model was formulated. Numerical fluxes at cell interfaces were calculated by MUSCL- Hancock method possessing second order precision in time and space. Slope limiter was introduced to obtain high resolution TVD scheme. When cells at the boundary were calculated, it was proposed that virtual cells should be established to obtain second order solutions in the whole computational domain. The instance verifications show that the proposed scheme has several desirable advantages, such as high precision, without fake numerical oscillation, low sensitivity to Courant number and good stability.

关 键 词:管道 流固耦合 数值计算 二阶精度 

分 类 号:TV134[水利工程—水力学及河流动力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象