检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐雪松[1] 宋东明[1] 张谞[1] 许满武[2] 刘凤玉[1]
机构地区:[1]南京理工大学计算机科学与技术学院,南京210094 [2]南京大学计算机科学与技术系,南京210093
出 处:《中国图象图形学报》2009年第6期1141-1147,共7页Journal of Image and Graphics
摘 要:LLE算法是一种新的非监督学习方法,主要针对非线性降维问题。针对该算法存在的缺点,提出了一种基于核函数的稳健线性嵌入方法,该方法通过引进核函数来优化算法邻域点的求解;在特征空间中,修正权值矩阵W,进行降噪处理,经过推导,最终将实际的子空间计算归结为标准的特征值分解问题。采用最小近邻分类器估算识别率。在Yale人脸库以及AT&T人脸库的测试结果表明,在姿态、光照、表情、训练样本数目变化的情况下,改进的算法都具有较好的识别率。As a new unsupervised learning method, Local Linear Embedding algorithm (LLE)aims at reducing the nonlinear dimensionality. Since the local linear embedding method has many disadvantages, a new method, namely robust linear embedding method based on a kernel function, is presented to solve this problem. Firstly, the kernel function is utilized to adjust the Euclidean distance between data points, so the new method can improve the performance and the range of application of LLE. Secondly, the new method using the improved W is selected because it is insensitive to noise. It is shown that the actual computation of the subspace is reduced to a standard eigenvalue problem. The proposed method was tested and evaluated in the Yale face database and AT&T face database. Nearest neighborhood (NN)algorithm was used to construct classifiers. The experimental results showed that the improved algorithm has good performance when pose, lighting condition, face expression and train sample number change.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222