检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓辉[1] WANG Xiao-hui (HanShan Teachers College, Department of Mathematics and Information Technology, Guangdong, Chaozhou 521041, China)
机构地区:[1]韩山师范学院数学与信息技术系,广东潮州521041
出 处:《电脑知识与技术》2009年第5期3513-3515,共3页Computer Knowledge and Technology
摘 要:对人脸图像进行二维Fisher鉴别分析(2D—FDA)的特称抽取与最临近支持向量机(ProximalSVM)的分类进行组合。首先把人脸图像按测试样本和训练样本进行划分。对训练样本进行2D—FDA特征抽取,得到抽取不同特征数目的具有最大鉴别信息的特征向量。然后再把此特征向量与测试样本相结合,用最简单的支持向量机进行分类,得到比用最小欧氏距离方法更高的识别效率,从而说明这两种方法的组合在人脸识别应用中发挥了各自的优点。The paper gives a method that combined Two Dimensional Fisher Discrimant analysis (2D-FDA) and Proximal SVM in face recognition. Firstly we divide the train sample from the whole, and the rest is the test sample. Then we extract most useful features using 2D-FDA method. After that, we project both train sample and test sample into the extractive feature space. Finally we classify the test sample used the Proxmal SVM method. The higher recogniation rate shows that the combined method has a better classification performances.
关 键 词:二维Fisher鉴别分析 最临近支持向量机 特征抽取 人脸识别
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69