基于弧长法的有限元逆算法在板料成形中的应用  被引量:4

Application of Inverse Finite Element Approach Based on Arc-length Method in Sheet Metal Forming

在线阅读下载全文

作  者:兰箭[1] 张靖暹[1] 张沔利[1] 舒茂盛[1] 

机构地区:[1]武汉理工大学材料科学与工程学院,湖北武汉430070

出  处:《热加工工艺》2009年第11期82-85,共4页Hot Working Technology

基  金:湖北省自然科学基金资助项目(2007ABA331);华中科技大学模具国家重点实验室开放基金资助项目(05-4;07-1)

摘  要:有限元逆算法能够预测冲压产品的毛坯展开形状和应变分布。初始解的确定是有限元逆算法的关键问题,它往往会引起单元拓扑关系的变化。经过研究,提出了弧长法,通过计算出最终构形上每个节点到所选取的弧长起始点之间的弧长,能够将产品的最终构形准确的映射到初始平面,并保持每个单元的拓扑关系,所获得初始解能够使有限元逆算法迅速收敛。通过圆盒件和类车门件的应用实例,证明了基于弧长法的有限元逆算法能高效和精确地对板料成形工艺方案进行快速评价。The IFEA is introduced for direct pre diction of blank shapes and strain distributions from desired final shapes in sheet metal forming. The key problem of IFEA is the calculation of initial solutions. Because of the difficulty to keep the topology of mesh elements, the arc-length method is proposed to resolve the difficulty, which map the final product by the arc length of every node of product to the original node. This method can keep topology of all the mesh elements, and improve the convergence of IFEA. The IFEA with arc-length based on initial solution method is applied to cylindrical cup and door-like product. The experimental and simulation results confirm its effectiveness and accuracy in design of sheet metal forming.

关 键 词:有限元逆算法 弧长法 毛坯展开 板料成形 

分 类 号:TG386[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象