PI-type Iterative Learning Control for Nonlinear Electro-hydraulic Servo Vibrating System  被引量:3

PI-type Iterative Learning Control for Nonlinear Electro-hydraulic Servo Vibrating System

在线阅读下载全文

作  者:LUO Xiaohui ZHU Yuquan HU Junhua 

机构地区:[1]School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

出  处:《Chinese Journal of Mechanical Engineering》2009年第3期451-455,共5页中国机械工程学报(英文版)

摘  要:For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of traditional PID control. By using memory ability of computer, the method keeps last time's tracking error of the system and then applies the error information to the next time's control process. At the same time, a forgetting factor and a D-type learning law of feedforward fuzzy-inferring referenced displacement error under the optimal objective are employed to enhance the systemic robustness and tracking accuracy. The results of simulation and test reveal that the algorithm has a trait of high repeating precision, and could restrain the influence of nonlinear factors like leaking, external disturbance, aerated oil, etc. Compared with traditional PID control, it could better meet the requirement of nonlinear electro -hydraulic servo vibrating system.For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of traditional PID control. By using memory ability of computer, the method keeps last time's tracking error of the system and then applies the error information to the next time's control process. At the same time, a forgetting factor and a D-type learning law of feedforward fuzzy-inferring referenced displacement error under the optimal objective are employed to enhance the systemic robustness and tracking accuracy. The results of simulation and test reveal that the algorithm has a trait of high repeating precision, and could restrain the influence of nonlinear factors like leaking, external disturbance, aerated oil, etc. Compared with traditional PID control, it could better meet the requirement of nonlinear electro -hydraulic servo vibrating system.

关 键 词:ELECTRO-HYDRAULIC vibrating system PI iterative learning forgetting factor fuzzy inference 

分 类 号:TP273.22[自动化与计算机技术—检测技术与自动化装置] O32[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象