检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王彦斌[1] 于德敏[1] 许增朴[1] 王永强[1]
出 处:《天津科技大学学报》2009年第3期50-53,共4页Journal of Tianjin University of Science & Technology
基 金:天津市科技发展计划项目(06YFGPGX08900)
摘 要:研究了利用从扬声器响应信号中提取特征进行扬声器故障识别的方法.首先通过小波包分解及重构得到扬声器响应信号的初始特征;然后利用主分量分析(Principal Component Analysis,PCA)的方法对初始特征进行降维处理,并得到最终特征;设计神经网络分类器,并将得到的最终特征输入分类器进行识别.实验表明,该特征提取方法在满足扬声器故障检测识别率的同时,降低了特征提取过程中的计算量,为扬声器故障诊断提供了一种实用方法.The method of extracting feature form loudspeaker response signal was used to detect the loudspeaker. Initial characteristic was obtained from loudspeaker response signal by using the decomposition and reconstruction of wavelet-packet firstly. Then principal components analysis was used to get the final characteristics. The final characteristic was used by the designed Neural network to recognize the loudspeaker. Experiments show that the method of extracting feature can meet the recognition rate and reduce the computation during the process of extracting feature. It provides a practical method for diagnosing the loudspeaker.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28