出 处:《Journal of Semiconductors》2009年第6期25-28,共4页半导体学报(英文版)
基 金:supported by the State Key Development Program for Basic Research of China(No.2006CB202604);the National Natural Science Foundation of China (No. 60576036);the National High Technology Research and Development Program of China (No. 2006AA05Z405)
摘 要:Boron-doped hydrogenated silicon films with different gaseous doping ratios(B2H6/SiH4) were deposited in a plasma-enhanced chemical vapor deposition(PECVD) system.The microstructure of the films was investigated by atomic force microscopy(AFM) and Raman scattering spectroscopy.The electrical properties of the films were characterized by their room temperature electrical conductivity(σ) and the activation energy(Ea).The results show that with an increasing gaseous doping ratio,the silicon films transfer from a microcrystalline to an amorphous phase,and corresponding changes in the electrical properties were observed.The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions.The measurements of the I-V characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04,and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it.The junction with such a recombination layer has a small resistance,a nearly ohmic contact,and a negligible optical absorption.Boron-doped hydrogenated silicon films with different gaseous doping ratios(B2H6/SiH4) were deposited in a plasma-enhanced chemical vapor deposition(PECVD) system.The microstructure of the films was investigated by atomic force microscopy(AFM) and Raman scattering spectroscopy.The electrical properties of the films were characterized by their room temperature electrical conductivity(σ) and the activation energy(Ea).The results show that with an increasing gaseous doping ratio,the silicon films transfer from a microcrystalline to an amorphous phase,and corresponding changes in the electrical properties were observed.The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions.The measurements of the I-V characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04,and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it.The junction with such a recombination layer has a small resistance,a nearly ohmic contact,and a negligible optical absorption.
关 键 词:PECVD BORON-DOPING tunnel junction recombination rate RECTIFICATION
分 类 号:TM914.4[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...