检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学信息科学与技术学院,成都610031
出 处:《电子与信息学报》2009年第5期1245-1248,共4页Journal of Electronics & Information Technology
摘 要:根据粒子群优化(PSO)算法的社会心理学指导思想并结合自适应FIR滤波器的特点,设计了合适的惯性项、认知项与社会项表达式,并将之应用于组合自适应滤波器的子自适应滤波器更新中,提出了基于PSO算法思想的组合自适应滤波算法,分析了新算法的计算复杂度。理论分析与不同条件下的自适应系统辨识仿真结果表明,新算法可以在不明显提高计算量的条件下较好地平衡自适应滤波器的稳态失调与跟踪能力,其收敛性能优于其它几种较新的LMS算法。Based on the social psychology idea behind the Particle Swarm Optimization (PSO) algorithm and the feature of adaptive FIR filter, the proper expressions for the "inertial", "cognitive" and "social" parts are designed and applied to the optimization of the adaptive FIR filter in the combined adaptive filter. A combined adaptive filtering algorithm based on the idea of PSO is presented, and the complexity of the new algorithm is also analyzed. The theory analysis azld the simulation results of the adaptive system identification under different conditions show that the new algorithm can balance the steady state misadjustment and tracking ability well, and its convergence performance is better than that of some other new LMS algorithms.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117