闭包系统的确定  被引量:6

Determination of closure systems

在线阅读下载全文

作  者:鲜路[1] 李生刚[1] 严小平[1] 

机构地区:[1]陕西师范大学数学与信息科学学院,陕西西安710062

出  处:《山东大学学报(理学版)》2009年第6期18-21,共4页Journal of Shandong University(Natural Science)

基  金:国家自然科学基金资助项目(10271069);陕西师范大学研究生培养创新基金资助项目(2009CXS029)

摘  要:证明了可以在WCL(X)(X上的弱闭包算子的全体)、WIN(X)(X上的弱内部算子的全体)、WOU(X)(X上的弱外部算子的全体)、WB(X)(X上的弱边界算子的全体)、WD(X)(X上的弱导算子的全体)、WD*(X)(X上的弱差导算子的全体)、WR(X)(X上的弱远域系算子的全体)和WN(X)(X上的弱邻域系算子的全体)上定义适当的序关系,使它们成为与(CS(X),)同构的完备格(其中CS(X)是给定集合X上的闭包系统的全体)。For an abitrary set X, appropriate order relations on WCL(X) ( the set of all weak closure operators), WIN(X) (the set of all weak interior operators ), WOU(X) (the set of all weak exterior operators ), WB( X ) (the set of all weak boundary operators), WD(X) (the set of all weak derived operators), WD^* (X) (the set of all weak difference derived operators), WR(X) (the set of all weak remote neighborhood system operators) and WN(X) (the set of all weak neighborhood system operators) can be defined respectively, which make WCL(X), WIN(X), WOU(X), WB(X), Wi)(X), WD^* (X), WR(X) and WN(X) to be complete lattices that are ismorphic to (C.S(X), C_ ), where C_S(X) is the set of all closure systems (a generalization of pre-cotopologies) on X.

关 键 词:闭包系统 弱内部算子 弱外部算子 弱边界算子 弱差导算子 弱远域系算子 

分 类 号:O189.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象