检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晓亮[1]
机构地区:[1]辽宁工程技术大学测绘与地理科学学院,辽宁阜新123000
出 处:《城市勘测》2009年第3期58-61,共4页Urban Geotechnical Investigation & Surveying
摘 要:最短路径的求解是GIS应用中的主要问题之一。在传统的最短路径求解算法中,Dijkstra算法和启发式搜索算法-A*算法具有较好的效果,得到了广泛的应用。蚁群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻径的行为而提出的一种基于种群的启发式仿生进化系统。蚁群算法最早成功应用于解决著名的旅行商问题,该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性,是一种很有前途的仿生优化算法。本文将对该算法应用于GIS中最短路径的求解方面的问题进行初步的研究。The solution of the shortest route is one of the most important problems in the applitations of GIS. The traditional methods are Dijkstra algorithm, A * algorithm and their modified algorithms. Using these algorithm, we can get good result. So these algorithms are used widely. Ant Colony Algorithms is a elicitation method of simulating evolution system based on population. It was developed by Dorigo and his partner by simulating Ant Colony' behavior of finding the shortest route to get foods. Ant Colony Algorithms was first used to solve the famous traveling salesman problem. This al- gorithms uses Feedforward and parallel calculation method, and it is very easy to combine with other methods and has stranger robustness. So this kind of algorithms has a very good future. In this paper, problems about using Ant Colony Algorithms in GIS will be discussed.
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33