检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:禹继国[1] 郑永猛[1] 刘桂真[2] 张永红[1]
机构地区:[1]曲阜师范大学计算机科学学院,日照276826 [2]山东大学数学与系统科学学院,济南250100
出 处:《运筹学学报》2009年第2期41-47,共7页Operations Research Transactions
基 金:supported by NNSF(10471078) of China;RFDP(20040422004) of Higher Education;Promotional Foundation(2005BS01016) for Excellent Middle-aged or Young Scientists of Shandong Province;UF(XJ0609) and DRF of QFNU
摘 要:给定一个简单图G和正整数k,具有完美匹配的图G的k-导出匹配划分是对顶点集V(G)的一个k-划分(V_1,V_2,…,V_k),其中对每一个i(1≤i≤k),由V_i导出的G的子图G[V_i]是1-正则的.k-导出匹配划分问题是指对给定的图G,判定G是否存在一个k-导出匹配划分.令M_1,M_2,…,M_k为图G的k个导出匹配,如果V(M_1)∪V(M_2)∪…∪V(M_k)=V(G),则我们称{M_1,M_2…,M_k}是G的k-导出匹配覆盖. k-导出匹配覆盖问题是指对给定的图G,判定G是否存在k-导出匹配覆盖.本文给出了Yang,Yuan和Dong所提出问题的解,证明了直径为5的图的导出匹配2-划分问题和导出匹配2-覆盖问题都是NP-完全的.Given a simple graph G and a positive integer k, a k-induced-matching partition of a graph G having a perfect matching is a k-partition (V1, V2,……, Vk) of V (G) such that for each i (1 ≤ i ≤ k), the subgraph G [Vi] of G induced by Vi is 1-regular. The k-induced-matching partition problem asks whether a given graph G has a k-inducedmatching partition or not. Let M1,M2,... Mk be k induced matching of G. We say {M1, M2,..., Mk} is a k-induced-matching cover of G if V(M1) U V(M2) U... U V(Mk) = V(G). The k-induced-matching cover problem asks whether a given graph G has a k- induced-matching cover or not. In this paper, 2-induced-matching partition problem and 2-induced-matching cover problem of graphs with diameter 5 are proved to be NP- complete, which gives a solution of Yang Yuan and Dong.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.223.25