检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学
出 处:《西北工业大学学报》1998年第2期292-296,共5页Journal of Northwestern Polytechnical University
摘 要:利用模糊神经网络(FNN)的学习能力从控制操作的现场数据中获取模糊规则,并自动调节隶属函数,把建模的过程转化为FNN网络结构多数的生成与学习问题。用于一个非线性过程的模糊模型参数辨识问题,取得了满意的结果。Fuzzy model is indispensable in the design of fuzzy control system. But it is difficult to get an applicable fuzzy model, as the choice of structure and the tuning of parameters of a fuzzy model often depend on the human expert's experience. Fuzzy neural network (FNN ) is a new tool for getting fuzzy rules from operation data. In this paper, we present a fuzzy identification method based on a FNN as shown in Fig.1. This method converts the process of modeling to the learning problem of FNN. Here, the structure and parameters of the fuzzy model embed in the weight parameters of FNN. So the FNN can identify the fuzzy rules and modify the membership functions automatically through training with operation - data set.This paper presents the structure of the FNN and a hybrid learning aigorithm. Also a simulation example of fuzzy model identification problem about a reaction process of chemical production is given. It suggests that this method has merits of simple structure, and good modeling accuracy(Fig. 2).
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程] TP18[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3