基于挠度理论的特殊自锚式悬索桥基础微分方程  被引量:2

Basic Differential Equation of Special Self-anchored Suspension Bridge Based on Flexibility Theory

在线阅读下载全文

作  者:苗峰[1] 张哲[1] 牟瑛娜[1] 叶毅[1] 

机构地区:[1]大连理工大学桥梁研究所,辽宁大连116023

出  处:《公路交通科技》2009年第7期75-79,共5页Journal of Highway and Transportation Research and Development

基  金:交通部西部交通建设科技资助项目(200631882350)

摘  要:自锚式索托桥作为一种特殊的自锚式悬索桥,受力情况与自锚式悬索桥近似,基于大位移非线性弹性理论的广义变分原理,建立了两跨自锚式索托桥挠度理论下的大位移不完全广义势能泛函,通过约束变分推导出自锚式索托桥基于挠度理论的基础微分方程。结果表明,在不考虑主缆纵向位移、不计吊杆拉伸和倾斜的情况下,不同的结构形式对于推导的结果没有影响,自锚式索托桥与自锚式悬索桥具有相同的挠度理论方程,它可以近似的等同于弹性理论方程,是一种线性的方程,适合于用弹性理论求解,对自锚式索托桥进行初步设计分析提供了理论依据。Self-anchored cable-held bridge is a special self-anchored suspension bridge that has the similar stress characteristics of self-anchored suspension bridge. Based on the generalized potential energy variational principal of nonlinear elasticity theory with large deflection, the incomplete generalized potential energy function with large deflection was established based on the flexibility theory of two-span self-anchored cable-held bridge. By restrictedly variation, the basic differential equation on the basis of flexibility theory was derived. Self-anchored cable-held bridge obtained the same flexibility theory based equation to self-anchored suspension bridge under the conditions that without consideration of longitudinal displacement of main cable, tension and inclined of hangers. Different structure forms have no effect on inference result. The equation is a linear one and approximately equates with elastic theory equations for solving by elastic theory to provide a theoretical basis for preliminary design analysis of self- anchored cable-held bridge.

关 键 词:桥梁工程 基础微分方程 挠度理论 特殊自锚式悬索桥 

分 类 号:U448.25[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象