最小二乘支持向量机在隧道围岩变形预测中的应用  被引量:7

Predicting Deformations of Tunnel Surrounding Rock by Using Least Squares Support Vector Machine

在线阅读下载全文

作  者:李晓龙[1] 王复明[1] 蔡迎春[1] 

机构地区:[1]郑州大学交通运输工程系,河南郑州450002

出  处:《公路交通科技》2009年第7期80-84,108,共6页Journal of Highway and Transportation Research and Development

基  金:国家杰出青年科学基金资助项目(19625205);河南省杰出人才创新基金资助项目(074200510006)

摘  要:针对基于标准型支持向量机(Vapnik SVM)的岩体变形预测方法计算复杂度大、应用不便的缺点,提出一种基于最小二乘支持向量机的围岩变形预测方法。该方法结合开挖岩体具有高度不确定性的特点,将其作为一个时变系统考虑,首先采用滑动时窗方式选取学习样本,然后利用获得的样本训练最小二乘支持向量机预测模型。利用这种方法对雪家庄隧道围岩变形进行预测,分析结果表明,该方法具有较高的预测精度,是一种简单可行的变形预测方法。In order to overcome the disadvantages of high computational complexity and inconvenience when forecasting deformations of surrounding rock by using support vector machine of standard form (Vapnik SVM), a new deformation prediction method based on least squares support vector machine ( LSSVM) was presented. By using this method, the excavated rock mass was regarded as a time-dependent system with high uncertainty and a sliding time window was employed first to select learning examples, then the examples obtained was used for training the corresponding IS-SVM prediction model. Finally the proposed method was applied to forecast the surrounding rock deformations of Xuejiazhuang Tunnel.The result shows that the method has relatively high prediction accuracy and therefore it is a feasible deformation prediction method with low computational complexity.

关 键 词:隧道工程 变形预测 最小二乘支持向量机 围岩变形 滑动时窗 

分 类 号:U456.31[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象