检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:童仲志[1] 邢宗义[1] 张媛[1] 高强[1] 贾利民[2]
机构地区:[1]南京理工大学机械工程学院,南京210014 [2]北京交通大学交通运输学院,北京100044
出 处:《高技术通讯》2009年第6期620-626,共7页Chinese High Technology Letters
基 金:国家自然科学基金(60674001);国家重点实验室开放课题基金(SKL2008K010);南京理工大学科技发展基金(XKF09003)资助项目
摘 要:针对电液伺服系统固有的流量-压力特性等非线性因素使得采用传递函数等传统方法难以获得电液伺服系统的精确模型的问题,详细研究了电液伺服系统的神经网络建模方法。研究了两种最常见的神经网络,即多层感知器神经网络和径向基函数神经网络,采用5种典型学习算法构造了3种多层感知器神经网络和2种径向基函数神经网络,并结合自动定深电液伺服系统的工程实例,详细分析了这5种神经网络在电液伺服系统中的建模性能。研究结果表明,采用正交最小二乘算法的径向基函数神经网络最适合电液伺服系统的建模。Aiming at the problem that construction of an accurate model of an electrohydraulic system based on traditional linear methods remains a difficult task due to its nonlinear characteristics including flow/pressure relation, etc, the paper presents a thorough study on modeling of electrohydraulic systems using different types of neural networks. The two widely used neural networks, i.e. the multilayer perceptron neural network (MLPNN) and the radial basis function neural net- work (RBFNN) were investigated, and three MLPNNs and two RBFNNs were constructed using their five typical training algorithms. All these techniques were then applied to an automatic depth control electrohydraulic system, and the model- ing performance of the five networks in the electrohydraulic system was analyzed. The results clearly indicated that the ra- dial basis function neural network with the orthogonal least square training algorithm is prior to other neural networks for modeling of electrohydraulic systems.
关 键 词:电液伺服系统 多层感知器神经网络(MLPNN) 径向基函数神经网络(RBFNN) 建模
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP271.31[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112