检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学智能信息处理研究所和智能感知与图像理解教育部重点实验室,陕西西安710071
出 处:《遥感学报》2009年第4期631-646,共16页NATIONAL REMOTE SENSING BULLETIN
基 金:国家自然科学基金(编号:60703109;60702062);国家"863"项目(编号:2006AA01Z107;2007AA12Z136;2007AA12Z223);国家"973"项目(编号:2006CB705700);教育部长江学者和创新团队支持计划(编号:IRT0645)
摘 要:提出了一种基于自适应空间邻域分析和瑞利-高斯模型(Rayleigh-Gaussmodels,RGM)分布的多时相遥感影像自动变化检测方法。该方法把自适应空间邻域信息和改进的差值影像与比值影像乘积变换融合法(improved multiplying transform fusion,IMTF)结合构造差异影像,可以有效地抑制噪声和消除多时相影像之间配准误差的影响,具有更强的鲁棒性。在对差异影像的分割处理中,运用瑞利和高斯模型分别模拟变化类像元和非变化类像元的分布情况,然后估计出两类像元的概率密度参数,最后采用改进的KI(Kittler-Illingworth)阈值选择算法自动高效地确定最佳变化检测阈值,提取变化区域。通过对模拟的和真实的MTRSI数据集的实验表明所提出的方法是有效的和鲁棒的。This paper proposes a novel automatic change detection approach for single band multi-temporal remote sensing images (MTRSI). First, the difference image is constructed by combining the spatial neighborhood information with the improved multiplying transform fusion (MTF) technique, which can well weaken noises and eliminate the effects caused by the registration error of multi-temporal images. In the segmentation processing of the difference image, the distributions of changed and unchanged classes are fitted by Rayleigh-Ganss models (RGM) and the probability densities of changed and unchanged pixels are estimated. Then the optimal change detection threshold is calculated automatically and effectively by the improved Kittler-Illingworth (KI) threshold selection algorithm. Finally, the changed regions are extracted. The experimental results obtained on the simulated MTRSI and the real MTRSI confirmed the effectiveness of the proposed approach. In particular, the results in terms of overall error and overall detected accuracy proved that the proposed generation approach of the difference image could have better performance than the MTF technique. In addition, as expected, the RGM was proved to be more suitable than the Gauss models (GM) and the Generalized-Gauss models (GGM) to fit the distributions of changed and unchanged classes And the change detection experiments also confirmed that the proposed automatic threshold selection method based on RGM fitting technique could achieve the very similar performance to the optimal results exhibited by the supervised manual trial and error procedure (MTEP).
关 键 词:变化检测 空间邻域分析 瑞利-高斯模型 阈值选择
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.85