Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides  被引量:1

Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides

在线阅读下载全文

作  者:Hongqing Chen Hao Yu Yong Tang Minqiang Pan Guangxing Yang Feng Peng Hongjuan Wang Jian Yang 

机构地区:[1]School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China [2]School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China

出  处:《Journal of Natural Gas Chemistry》2009年第2期191-198,共8页天然气化学杂志(英文版)

基  金:supported by the National Natural Science Foundation of China (No. 50675070)

摘  要:Hydrogen was produced over noble metal(Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol.Hydrogen was produced over noble metal(Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol.

关 键 词:autothermal reforming ETHANOL hydrogen production IRIDIUM lanthanum oxide 

分 类 号:TQ225.52[化学工程—有机化工] TQ116.2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象