检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics,Hebei Normal University
出 处:《Journal of Mathematical Research and Exposition》2009年第4期629-638,共10页数学研究与评论(英文版)
基 金:the National Natural Science Foundation of China (No.10571040);the Doctoral Foundation of Hebei Normal University (No.L2004B04)
摘 要:Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. A.T. Diallo investigated some approximation properties of Szasz-Mirakjan Quasi-Interpolants, but he obtained only direct theorem with Ditzian-Totik modulus wφ^2r (f, t). In this paper, we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f ∈ CB[0, ∞) by making use of the unified modulus wφ^2r(f, t) (0≤λ≤ 1).Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence.A.T.Diallo investigated some approximation properties of Szàsz-Mirakjan Quasi-Interpolants,but he obtained only direct theorem with Ditzian-Totik modulus ω2r(f,t).In this paper,we extend Diallo's result and solve completely the characterization on the rate of approximation by the method of quasi-interpolants to functions f∈CB[0,∞) by making use of the unified modulus ω2rλ(f,t)(0≤λ≤1).
关 键 词:Quasi-interpolants Szasz-Mirakjan operator equivalence theorem Ditzian-Totik modulus unified modulus.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.187