检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2009年第7期193-196,共4页Computer Science
基 金:国家自然科学基金青年基金(No.60803086);北京工业大学博士科研启动基金(52007012200701)资助
摘 要:单文档问答式信息检索,即是阅读理解(Reading Comprehension,简称RC)。该任务的目的在于理解一篇文档并对提出的问题返回答案句。提出了充分利用外部资源采用多策略技术来提高RC系统性能的方法,包括基于Web的答案模式匹配应用、词汇语义关联推理以及上下文辅助等策略。本方法使得RC系统性能在Remedia标准测试集上的性能得到提高。描述了不同策略对提高系统性能的有效性,t-test结果表明,运用答案模式匹配和词汇语义关联推理策略所得到的性能显著提高;同时分析了指代消解策略在系统中的关键作用;最后比较了RC任务和多文档问答式信息检索(Question Answering,简称QA)任务的差异性。Single document question answering is also called Reading Comprehension(RC), which attempts to understand a document and returns an answer sentence when posed with a question. We proposed an approach that adopted multi-strategy and utilized external knowledge to improve the performance of RC, including pattern matching with Web- based answer patterns, lexical semantic relation inference and context assistance. This approach gives improved RC performance on the Remedia corpus. The effectiveness of different strategy was analyzed and pairwise t-tests show the performance improvements due to Web-derived answer patterns and lexical semantic relation inference technique are statistically significant. In addition, the performance impact by the co-reference resolution was also discussed. Finally, the comparison between the task of RC and multi-document question answering(QA) was analyzed.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28