检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学工程学院信号与信息处理实验室,西安710038
出 处:《光电工程》2009年第7期41-44,共4页Opto-Electronic Engineering
基 金:国家863项目2007AA701206)
摘 要:为了提高红外图像序列中弱小目标的信噪比和检测概率,同时考虑检测算法实时性,提出了一种新的基于空时域滤波的小目标检测方法。首先,以第一帧图像为参考帧,对各帧图像进行运动补偿;然后,对运动补偿后的各帧图像在空域进行方差加权信息熵滤波,对空域滤波后图像采取双向隔帧差分的时域滤波;最后通过检测差分图像中的"凸包",抑制背景和噪声,检测小目标。文中给出了实验结果与分析,并与其他方法作了比较。实验结果表明,上述方法能大幅度的提高目标的信噪比,检测小目标,且实时性好。To improve the Signal-to-noise Ratio (SNR) and detecting probability of small target in infrared image sequences, a novel method of target detection based on spatial-temporal filtering is proposed. This method considered the real-time characteristic of the detecting algorithm. Firstly, the first frame was set as a reference frame and the other frames were compensated in motion. Secondly, the frames compensated were filtered by variance Weighted Information Entropy (Variance WIE) filter in spatial domain. After that, a bi-directional inter-frame difference method was adopted in temporal domain. At last, by detecting the protruding spot of the difference images, the background and noises in infrared images were inhibited and the small target was detected. The experimental results were analyzed and compared with some other methods. The results show that this approach can highly improve the SNR of target, precisely detect the small infrared target, and express fine real-time performance.
关 键 词:空时域滤波 方差加权信息熵 双向隔帧差分 凸包检测 小目标检测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3