检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常炳国[1]
出 处:《湖南大学学报(自然科学版)》2009年第7期82-84,共3页Journal of Hunan University:Natural Sciences
基 金:国家科技支撑计划项目资助(2006BAK31B03)
摘 要:基于传感器阵列和神经网络构造智能系统用于检测混合气体的低质量分数.传感器阵列获取质量分数为1×10^-6-5×10^-6范围的H2,C2H4,C2H2混合气体响应和质量分数为5×10^-5~3×10^-4范围的CO响应.通过RBF神经网络学习改善低质量分数混合气体检测的灵敏度.把传感器响应作为神经网络输入,神经网络输出为H2,C2H4,C2H2和CO的质量分数.实例分析表明,系统能较好地克服低质量分数混合气体检测过程中普遍存在的交叉灵敏度,得到满意的检测结果.An Intelligent Measurement System was constructed based on gas sensor array and RBF neural network to measure the quality fraction of mix gases. The former was used to acquire the signals responding to H2, C2H4 and C2H2 with a concentration of 1× 10^-6 -5 × 10^-6 and CO with a concentration of 5× 10^-5 -3× 10^-4, and the latter was introduced to improve the selectivity of the gas sensors. With a whole pattern of different sensors as input nodes of the network, the quality fraction of H2, C2H4, C2H2 and CO could be correspondingly predicted as the output of the network. It can overcome the cross sensitivity among heterogeneous gas sensors and lead to more satisfied measurement results.
关 键 词:智能系统 交叉灵敏度 传感器阵列 RBF神经网络
分 类 号:TP835[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15