Every Weakly Compact Set Can Be Uniformly Embedded into a Reflexive Banach Space  被引量:8

Every Weakly Compact Set Can Be Uniformly Embedded into a Reflexive Banach Space

在线阅读下载全文

作  者:Li Xin CHENG Qing Jin CHENG Zheng Hua LUO Wen ZHANG 

机构地区:[1]Department of Mathematics, Xiamen University, Xiamen 361005, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第7期1109-1112,共4页数学学报(英文版)

基  金:Supported by NSFC Grant No. 10771175

摘  要:Based on an application of the Davis-Figiel-Johnson-Pelzyski procedure, this note shows that every weakly compact subset of a Banach space can be uniformly embedded into a reflexive Banach space. As its application, we present the recent renorming theorems for reflexive spaces of Odell- Schlumprecht and Hajek-Johanis can be extended and localized to weakly compact convex subsets of an arbitrary Banach space.Based on an application of the Davis-Figiel-Johnson-Pelzyski procedure, this note shows that every weakly compact subset of a Banach space can be uniformly embedded into a reflexive Banach space. As its application, we present the recent renorming theorems for reflexive spaces of Odell- Schlumprecht and Hajek-Johanis can be extended and localized to weakly compact convex subsets of an arbitrary Banach space.

关 键 词:Banach space weakly compact set RENORMING 

分 类 号:O177.91[理学—数学] O177.3[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象