On Modules with d-Koszul-type Submodules  被引量:5

On Modules with d-Koszul-type Submodules

在线阅读下载全文

作  者:Jia Feng LU 

机构地区:[1]College of Mathematics and Physics, Zhejiang Normal University, Jinhua 321004, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第6期1015-1030,共16页数学学报(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.10571152)

摘  要:The so-called weakly d-Koszul-type module is introduced and it turns out that each weakly d-Koszul-type module contains a d-Koszul-type submodule. It is proved that, M ∈ W H J^d(A) if and only if M admits a filtration of submodules: 0 belong to U0 belong to U1 belong to ... belong to Up = M such that all Ui/Ui-1 are d-Koszul-type modules, from which we obtain that the finitistic dimension conjecture holds in W H J^d(A) in a special case. Let M ∈ W H J^d(A). It is proved that the Koszul dual E(M) is Noetherian, Hopfian, of finite dimension in special cases, and E(M) ∈ gr0(E(A)). In particular, we show that M ∈ W H J^d(A) if and only if E(G(M)) ∈ gr0(E(A)), where G is the associated graded functor.The so-called weakly d-Koszul-type module is introduced and it turns out that each weakly d-Koszul-type module contains a d-Koszul-type submodule. It is proved that, M ∈ W H J^d(A) if and only if M admits a filtration of submodules: 0 belong to U0 belong to U1 belong to ... belong to Up = M such that all Ui/Ui-1 are d-Koszul-type modules, from which we obtain that the finitistic dimension conjecture holds in W H J^d(A) in a special case. Let M ∈ W H J^d(A). It is proved that the Koszul dual E(M) is Noetherian, Hopfian, of finite dimension in special cases, and E(M) ∈ gr0(E(A)). In particular, we show that M ∈ W H J^d(A) if and only if E(G(M)) ∈ gr0(E(A)), where G is the associated graded functor.

关 键 词:d-Koszul-type algebras and modules weakly d-Koszul-type modules 

分 类 号:O153.3[理学—数学] F407.3[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象