检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jia Feng LU
机构地区:[1]College of Mathematics and Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2009年第6期1015-1030,共16页数学学报(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.10571152)
摘 要:The so-called weakly d-Koszul-type module is introduced and it turns out that each weakly d-Koszul-type module contains a d-Koszul-type submodule. It is proved that, M ∈ W H J^d(A) if and only if M admits a filtration of submodules: 0 belong to U0 belong to U1 belong to ... belong to Up = M such that all Ui/Ui-1 are d-Koszul-type modules, from which we obtain that the finitistic dimension conjecture holds in W H J^d(A) in a special case. Let M ∈ W H J^d(A). It is proved that the Koszul dual E(M) is Noetherian, Hopfian, of finite dimension in special cases, and E(M) ∈ gr0(E(A)). In particular, we show that M ∈ W H J^d(A) if and only if E(G(M)) ∈ gr0(E(A)), where G is the associated graded functor.The so-called weakly d-Koszul-type module is introduced and it turns out that each weakly d-Koszul-type module contains a d-Koszul-type submodule. It is proved that, M ∈ W H J^d(A) if and only if M admits a filtration of submodules: 0 belong to U0 belong to U1 belong to ... belong to Up = M such that all Ui/Ui-1 are d-Koszul-type modules, from which we obtain that the finitistic dimension conjecture holds in W H J^d(A) in a special case. Let M ∈ W H J^d(A). It is proved that the Koszul dual E(M) is Noetherian, Hopfian, of finite dimension in special cases, and E(M) ∈ gr0(E(A)). In particular, we show that M ∈ W H J^d(A) if and only if E(G(M)) ∈ gr0(E(A)), where G is the associated graded functor.
关 键 词:d-Koszul-type algebras and modules weakly d-Koszul-type modules
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145