一种新的基于决策熵的决策表约简方法  被引量:9

New reduction method based on decision information entropy in decision table

在线阅读下载全文

作  者:徐久成 孙林[1] 

机构地区:[1]河南师范大学计算机与信息技术学院,河南新乡453007

出  处:《重庆邮电大学学报(自然科学版)》2009年第4期479-483,共5页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)

基  金:国家自然科学基金项目(60873104);河南省高校新世纪优秀人才支持计划(2006HANCET-19)

摘  要:分析了在知识约简过程中经典粗糙集理论决策表知识约简方法的不足。以知识粗糙熵为基础,将一致和不一致对象分开,提出决策熵的概念及其属性重要性,在此基础上给出约简的判定定理;然后以条件属性子集的决策熵来度量其对决策分类的重要性,提出一种新的知识约简启发式方法。理论分析和实验结果表明,基于决策熵的属性重要性是一种更有效的启发式信息,该方法时间复杂度较低,有助于搜索最小或次优约简。In decision table, the disadvantages of classical rough reduction algorithm were analyzed. Based on the recent rough entropy of knowledge, the new decision information entropy was proposed with separating consistent objects from inconsistent objects, and the new significance of an attribute was defined. The judgment theorem based on this entropy was obtained with respect to knowledge reduction. Condition attributes were considered to estimate the significance for decision classes, and a heuristic algorithm was proposed. Theoretical analysis shows that the proposed heuristic information was better and more efficient than the others, and experimental results prove the validity of the heuristic algorithm in searching the minimal or optimal reduction.

关 键 词:粗糙集 决策表 决策熵 知识约简 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象