检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈涛[1]
出 处:《统计与决策》2009年第14期31-33,共3页Statistics & Decision
基 金:国家自然科学基金资助项目(70472072)
摘 要:多变量时间序列包含有比单变量时间序列更丰富的动态信息,具有一定的信息完备性和确定性,但多变量时间序列同时也会带来一定的冗余信息和部分噪声。为了更好地反映多变量时间序列的动态特性,文章对多变量时间序列进行空间重构,并利用主成分分析法(PCA)对重构后的多变量时间序列进行处理,以减低特征空间维数;最后采用支持向量机建立预测模型。仿真实验表明,该预测模型具有较强的自适应能力和较好的预测效果。
关 键 词:多变量时间序列 相空间重构 主成分分析法(PCA) 支持向量机(SVM) 预测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30