广义非局域非线性薛定谔模型的自相似解(英文)  被引量:1

Exact self-similar solution to a generalized nonlocal nonlinear Schr(o|¨)dinger model

在线阅读下载全文

作  者:张少武[1] 易林[2] 

机构地区:[1]湖北师范学院物理系,湖北黄石435002 [2]华中科技大学物理系,湖北武汉430074

出  处:《量子电子学报》2009年第4期465-472,共8页Chinese Journal of Quantum Electronics

摘  要:在获得一个含变化3-5阶非线性、弱非局域性、增益及非线性增益的广义薛定谔方程的自相似解的基础上,采用数值方法研究了解的稳定性。结果表明,在同时具有或没有非局域性和5阶非线性的介质中可以形成与传播自相似波;而且当相位参数远离±2^(1/2)时,非局域度和累积衍射将极大影响自相似波的稳定性。Exact self-similar solution of a generalized nonlinear SchrSdinger equation with varying cubic-quintic nonlinearity, weakly nonlocality, gain and nonlinear gain was obtained. The stability of the solution was studied numerically. The results show that the self-similar solitary wave can exist and propagate in the media with or without both nonlocality and quintic nonlinearity, and that the stability of the self-similar solitary wave is drastically influenced by the degree of nonlocality and the cumulative diffraction under the condition that the phase parameter is fax from ±√2.

关 键 词:非线性光学 自相似解 弱非局域非线性薛定谔方程 非线性增益 

分 类 号:O437.5[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象