检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2009年第23期63-66,共4页Computer Engineering and Applications
基 金:2007年度教育部高等学校创新工程重大培育项目
摘 要:研究了异构属性数据的聚类问题。通过挖掘样本中的结构信息,用加权的Mahalanobis距离来度量异构样本的相异性;根据分类属性数据的分布与粒子在量子势能场中的分布不平衡的相似性,重写量子势能公式为距离量子势能的形式,提出了一种新的异构属性数据量子聚类WMDQC算法。通过进一步集成该算法和AHC算法为WMDQCM聚类方法,用AHC算法更高效地挖掘样本中有利于聚类的结构线索。实验结果表明,方法具有比较优势,显著地改善了聚类性能,具有一定的实用价值。The dissimilarity measure and clustering approach about the heterogeneous dataset are studied,and a Weighted Mahalanobis Distance-based Quantum Clustering(WMDQC ) algorithm is presented in this paper.Data often do appear in homogeneous groups,the WMDQC utilizes the structural information to improve the clustering accuracy.Unlike the numeric data,categorical data are often unbalancedly distributed,whose distribution are often unrelated with their distance measure.These characteristics are very similar to the particle world in quantum mechanism,so the WMDQC ascertains the clustering centers by the rewriting quantum potential.Further,a WMDQC-based method WMDQCM is proposed,the WMDQCM mines the structural clue by the agglomerative hierarchical clustering AHC algorithm to construct the weight matrix.By presenting the above to the WMDQC,the final clustering results are obtained.The new WMDQCM exhibits its robustness to initialization and clustering capability to heterogeneous dataset.Experimental results compared with other methods demonstrate that the proposed method has promising performance.
关 键 词:异构数据 相异性度量 MAHALANOBIS距离 量子势能 聚类算法
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200