检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学光电技术及系统教育部重点实验室,重庆400030
出 处:《自动化技术与应用》2009年第7期57-59,共3页Techniques of Automation and Applications
摘 要:本文研究基于Gabor小波变换和流形学习的人脸识别方法,首先引入Gabor小波对人脸图像提取不同方向、不同尺度的多个Gabor幅值特征(Gabor magnitude feature),然后使用能够提取子流形的NPE算法对GMF特征进行维数约简,最后使用线性判别分析进一步提取鉴别性特征。此算法利用了Gabor特征对人脸图像的优异表征能力、流形方法和传统的判别方法。在标准人脸库上的实验结果表明,与其他降维方法相比,新算法能够获得较好的识别效果。This paper introduces a face recognition method based on the Gabor features and Manifold learning. First, the Gabor wavelet is used as a method to extract their corresponding Gabor magnitude features (GMF) by convolving the face image with multiscale and multiorientation Gabor filters. Then, NPE operates on GMFs to extract the submanifolds and the Linear Discriminant Analysis is used to promote the discriminative ability. Experiments with ORL databases show that the approach is quite effective.
关 键 词:人脸识别 GABOR小波 流形学习 邻近保距嵌入
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3