检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林新[1] 牛智有[1] 刘梅英[1] 马爱丽[1]
出 处:《华中农业大学学报》2009年第4期487-490,共4页Journal of Huazhong Agricultural University
基 金:湖北省自然科学基金项目(2007ABA351)资助
摘 要:应用现代近红外光谱分析技术,建立了绿茶中水分、茶多酚、咖啡碱和游离氨基酸4种主要成分的改进偏最小二乘(MPLS)定标模型,用目标函数法对不同光谱预处理方法进行考查,评定出最优模型,并对其进行了验证。各成分最优模型的目标函数值(f)分别为98.84%、95.66%、95.07%和94.25%,相对标准差(RSD)分别为4.53%、4.57%、8.33%和6.39%,预测决定系数(R2)分别为0.95、0.85、0.63和0.71。测定结果表明:应用近红外光谱分析可以实现绿茶中4种成分的快速定量检测,水分、茶多酚和游离氨基酸模型取得了良好的预测效果,可以用于实际检测;咖啡碱模型预测效果较差,需要进一步优化。Using modern near infrared spectroscopy(NIRS) analytical technology, the modified PLS calibration models of moisture content, tea polyphenol, caffeine and free amino acids in green tea were established. The effects of different spectral data preprocessing methods were studied with object function method. The optimal NIRS models were evaluated and validated. The values of object function for each optimal model are 98. 84%, 95. 66%, 95. 07% and 94. 25% respectively. The relative standard deviations(RSD) are 4. 53%, 4.57%, 8.33% and 6.39 %, and the prediction determination coefficients(R2) are 0. 95, 0. 85, 0. 63 and 0. 71 respectively. The results show that using NIRS technology can achieve rapid quantitative determination of four kinds of composition in green tea. The prediction results of moisture content, tea polyphenol and free amino acids models are good; their models can be used in actual detection. However the prediction result Of caffeine model is poor; the model should be further opti- mized.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80