一种更有效的K-means聚类算法  被引量:5

A More Effective K-Means Clustering Algorithm

在线阅读下载全文

作  者:单玉双[1] 邢长征[1] 

机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105

出  处:《计算机系统应用》2009年第8期96-99,共4页Computer Systems & Applications

摘  要:一个好的聚类算法不仅要考虑"同类内尽可能的相似,不同类间尽可能的相异",而且也要考虑算法的时间复杂度。针对K-means算法依赖于初始聚类中心而影响聚类结果,提出了一种基于样本分布选取初始聚类中心的方法;针对K-means算法中每次调整聚类中心后指定聚类所需要的大量的距离计算,提出了三角不等式原理避免冗余计算的方法。将两种方法结合进行实验,结果表明新的方法更加有效,不仅较原算法有良好的聚类划分,而且加快了原算法的运行速度。

关 键 词:聚类算法 时间复杂度 样本分布 冗余计算 聚类划分 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象