检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学电子信息工程学院,北京100044 [2]北京市眼科研究所,北京100005
出 处:《中国生物医学工程学报》2009年第4期501-507,共7页Chinese Journal of Biomedical Engineering
基 金:新世纪优秀人才支持计划(50051);国家自然科学基金资助项目(60872081)
摘 要:视网膜图像的血管提取对心脑血管等疾病的诊断、治疗与评价具有重要的临床应用价值。为解决目前视网膜血管分割算法中存在的分割精度低(特别针对病变图像)等问题,提出基于先验知识随机游走模型的视网膜血管分割方法。在分析视网膜血管特征的基础上,构建归一化梯度向量散度场,针对高、低对比度血管采用不同的定向拉普拉斯算子提取血管中心线,并将先验知识随机游走模型应用于图像分割,实现对比度低、边界微弱的视网膜血管提取。采用STARE视网膜图像库进行分割精度测试,结果表明本算法精度相对已有算法明显提高,特别针对带有病变的视网膜图像,算法的有效性得到了验证,可满足临床处理的要求。Segmentation of retinal blood vessels is significant to diagnosis, treatment and evaluation of the cardiocerebro-vascular diseases. To overcome shortcomings of the existed segmentation algorithms, a novel method based on prior knowledge random walks model was proposed in this paper. Considering the model of the blood vessels, divergence field of normalized gradient vector was constructed, while high-contrast and low-contrast vessel centerlines were extracted using different oriented Laplasian operators. These centerlines were selected as the prior knowledge of random walks model to realize segmentation of blood vessels with low contrast and faintness edges. Experiments were made under STARE public retinal image database. The proposed method achieved better segmentation accuracy than those from existed algorithms. Moreover, the efficiency could satisfy the requirement of clinic diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.164.105