检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘钊[1]
机构地区:[1]东南大学混凝土及预应力混凝土结构教育部重点实验室,南京210096
出 处:《工程力学》2009年第8期168-173,共6页Engineering Mechanics
基 金:江苏省自然科学基金项目(BK2002061)
摘 要:以极小化拱肋和系梁的应变能为目标,研究了确定吊杆合理内力的三种方法:其一是基于无约束最小应变能原理的"刚性吊杆法";其二是基于无约束最小弯曲应变能原理的"无限轴向刚度法";第三种方法是形成一个二次规划问题,以离散化结构的最小弯曲应变能为目标函数,以某些位置的弯矩、位移或吊杆内力等作为约束条件。在具体求解方法上,指出"刚性吊杆法"和"无限轴向刚度法"可以通过对某些截面赋大值的方法实现,同时也讨论了"二次规划法"的目标函数和约束条件的构建和求解方法。最后,结合实例讨论了这三种方法的应用情况,显示其具有很好的工程应用价值。By taking the minimum strain energy as objective functions, three approaches for determining the optimal hanger forces of tie-arch bridges are proposed. The first one is named Stiff Hanger Method, which is based on unconstrained minimum strain energy. The second one is termed Infinite Axial Stiffness Method, based on unconstrained minimum bending strain energy. In the third approach, a quadratic programming problem is formed, in which the objective function is to minimize the bending strain energy of the discrete structure, and the constraints can be set by giving the upper and lower boundaries of bending moments for some sections, acceptable displacement at certain points and/or limits for hanger forces. As to the implementation procedure, the Stiff Hanger Method and the Infinite Axial Stiffness Method can be executed by substituting some cross-sectional areas with large enough numerical values, and the practical process for solving the quadratic programming problem is also discussed. In the end, the applications of the three methods are exemplified and discussed.
分 类 号:U441[建筑科学—桥梁与隧道工程] U448.22[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.59