检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学电子信息学院,陕西西安710072
出 处:《计算机仿真》2009年第8期345-348,共4页Computer Simulation
摘 要:为了改善固定遗忘因子RLS(Recursive least-square)算法在时变系统中的跟踪性能,提出了一种改进的RLS算法。改进的RLS算法结合了可变遗忘因子的RLS算法和自扰动RLS算法,既克服了固定遗忘因子RLS算法中跟踪速度和参数失调的矛盾,而且也避免了当参数估值趋向于参数真值时,卡尔曼增益趋于零,从而RLS算法失去对时变系统的跟踪能力的问题。最后,在MATLAB平台下,对改进后的RLS算法进行了仿真验证。仿真结果表明,算法具有较快的收敛速度和跟踪速度以及较小的稳态误差。In order to improve the tracking performance of the fixed forgetting factor RLS algorithm in the time - varying system, a modified RLS algorithm is proposed, which combines variable forgetting factor RLS algorithm with self- perturbing RLS algorithm. It overcomes the contravention between the tracking velocity and parameters' misadjustment in the fixed forgetting factor RLS algorithm. In addition, Kalman gain will tend to zero as the parameter estimates approach their true values. As a result, RLS algorithm will eventually lose its tracking ability in the time - varying system. Now the proposed algorithm can solve this problem. In the end of this paper, the modified RLS algorithm is simulated in the MATLAB platform. The simulation results prove that this algorithm has high convergence velocity, high tracking velocity and small stationary error.
分 类 号:TN911.72[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28