检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《火力与指挥控制》2009年第8期97-100,共4页Fire Control & Command Control
摘 要:针对现代战场信息化程度的不断提高,电磁环境日趋复杂,侦查目标难以准确地识别情况,提出了运用支持向量机多分类器对军事侦查目标进行有效识别。结构风险最小化地支持向量机分类方法是小样本情况下统计机器学习的经典,具有速度快、泛化能力强等特点。用该算法建模军事目标的识别问题,达到了较高的识别准确率。所以应用在对侦查目标的识别上具有良好的效果,在军事应用上有较广阔的前景。The informatization of modern battlefield is unceasing increasing its electromagnetic environment is complex day by day,as a result,the target recognition is difficult to be accurate in target reconnaissance. This paper proposed a method that can effectively recognize the target through the use of multi-classification support vector machine. The structure risk of this method is smallest,have fast spped and strong generalization. This method is used to model the recognition of military, and obtained higher accuracy of recognition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200