基于灰度共生矩阵的骨肉瘤图像分析  被引量:7

Osseous tumors imaging analysis based on the gray level co-occurrence matrix

在线阅读下载全文

作  者:刘燕[1] 管炜桥[1] 董俊斌[1] 李超峰[1] 

机构地区:[1]中山大学中山医学院计算机中心,广东广州510080

出  处:《中国医学影像技术》2009年第8期1492-1495,共4页Chinese Journal of Medical Imaging Technology

基  金:广东省科技计划项目基金(2004B30601002)

摘  要:目的寻求骨肉瘤影像诊断的数字化特征指标。方法通过探讨利用基于灰度共生矩阵的图像纹理分析方法,对骨肉瘤影像的病变骨质区、正常骨质区、软组织区分别提取对比度、逆差矩、能量、熵和相关性5种特征值,进行数字特征分析。结果经过统计分析,病变骨区域、正常骨区域以及软组织区域三者之间的每一种特征值差异均有统计学意义。结论数字特征的提取对识别病变和正常组织有意义。Objective To seek the digital characteristics for osseous tumor image diagnosis. Methods The contrast, homogeneity, energy, entropy and correlation were fetched from pathologically changed osseous region, normal osseous region and parenchyma region of the X-ray images with imge texture analysis methods based on the grey level co-occurrence matrix in 15 patients with osseous tumor. Results Significant differences of characteristics were detected among pathologically changed osseous area, normal osseous area and parenchyma area of the osseous tumor. Conclusion Digital characteristics fetched from image are significant for recognizing pathologically changed osseous and normal osseous.

关 键 词:骨肿瘤 数字特征 灰度共生矩阵 

分 类 号:R738.1[医药卫生—肿瘤] R445[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象