检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中师范大学物理科学与技术学院,武汉430079
出 处:《华中师范大学学报(自然科学版)》2009年第2期235-238,共4页Journal of Central China Normal University:Natural Sciences
基 金:湖北省自然科学基金创新群体项目(2006ABC011)
摘 要:Hilbert-Huang变换是最新发展起来的处理非线性非平稳信号的时频分析方法。其基本的实现分为两步,经验模态分解和瞬时频率的求解。这种方法的核心部分是经验模态分解,任何复杂的信号都可以分解为有限数目并且具有一定物理意义的本征模态函数,对这些本征模态函数作Hilbert变换即可得到每一个本征模态函数的瞬时频率。经验模态分解方法是一个以信号极值特征尺度为度量的时空滤波过程,它充分保留了信号的局部特征,在信号的滤波和去噪中具有较大的优势。本文讨论了Hilbert-Huang变换时空滤波的实现过程,仿真验证了该方法的优越性。Hilbert-Huang Transform (HHT) is a new two-step time frequency analytic method to analyze the non-linear and non-stationary signal. The key step of this method is empirical mode decomposition (EMD) method with which any complicated data set can be decomposed into several Intrinsic Mode Function (IMF) components. Using Hilbert transform to those IMF components can yield instantaneous frequency. The empirical mode decomposition (EMD) can be interpreted as a temporal and spatial filtering based on the signal's extremum characteristic scale. This method preserves the nonlinearity and non-stability of signal, and has potential superiority in filtering and de-noising. The experimental results clarify the advance and efficient of this method.
关 键 词:Hilbert—Huang变换 经验模态分解(EMD) 时空滤波 信号去噪
分 类 号:TN911.74[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147