一种致密碎屑岩储层产能预测的新方法——以新场气田沙溪庙组为例  被引量:3

A New Method of Prediction Capacity in Compact Clastic Rock Reservoir

在线阅读下载全文

作  者:黄建红[1] 王洪辉[2] 曾剑毅[1] 段新国[1] 蔡左花[1] 

机构地区:[1]成都理工大学能源学院,四川成都610059 [2]四川文理学院院办,四川达州635000

出  处:《四川文理学院学报》2009年第5期114-117,共4页Sichuan University of Arts and Science Journal

摘  要:针对致密碎屑岩储层产能预测精度较低这一难题,首次提出基于支持向量回归的产能预测方法。该方法在处理小样本问题上具有独到的优势,能够处理分类和回归预测问题。以新场气田沙溪庙组致密碎屑岩储层为例,选取33个已知样本(其中23个用于模型构建,10个用于精度检验),以储层厚度、裂缝张开度、裂缝孔隙度、裂缝渗透率、声波时差差值、测井孔隙度、电阻率差7个影响因素作为支持向量机输入,以样本储层的自然产能作为输出,构建基于支持向量回归的产能预测模型。模型预测的标准误差和平均绝对误差分别为0.0416和0.0229,表明该模型具有较高的预测精度,为致密碎屑岩储层产能的准确预测探索了又一新方法,对同类地区的研究和开发在一定程度上具有指导作用。It is always difficult to predict production capacity in reservoir accurately. This paper proposes a method of prediction capacity based on support vector regression (SVR) to solve this problem. Support vector machine ( SVM), which is a new machine study arithmetic based on statistical learning theory, can solve small - sample problems better. It succeeds in classification and prediction. 33 samples tested (23 of them were used to form the model and the others.were used to examine the precision of the model) from the compact clastic reservoir in Shaxumiao Formation of Xinchang gas field were selected, and the capacity prediction model based on SVR was established by using h, △t - △tmaε,φf, Kf,φand △R as input and using the capacity of reservoir as output. The normative error of capacity prediction model is 0. 0416, and the average absolute error is only 0. 0229. Therefore, the model formed is a new method for predicting capacity in clatic reservoir rock, and will provide useful reference for simiIar research in other regions.

关 键 词:新场气田 产能预测 支持向量机 支持向量回归 致密碎屑岩 

分 类 号:P618.130.2[天文地球—矿床学] TE328[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象