基于遗传小波神经网络MIG焊熔透状态模式识别  被引量:3

Penetration state recognition of MIG welding based on genetic wavelet neural network

在线阅读下载全文

作  者:温建力[1] 刘立君[2] 兰虎[1] 

机构地区:[1]哈尔滨理工大学材料科学与工程学院,哈尔滨150080 [2]浙江大学宁波理工学院,浙江宁波315100

出  处:《焊接学报》2009年第8期41-44,共4页Transactions of The China Welding Institution

基  金:宁波自然基金资助项目(2008A610031);黑龙江省自然基金资助项目(E2007-01);黑龙江省青年骨干教师基金资助项目(1153G009);哈尔滨市科技创新基金资助项目(2007RFQXG055)

摘  要:通过对已有的人工神经网络、小波分析、遗传算法的建模方法进行组合利用并加以改进,建立了基于电弧声信号特征的MIG焊熔透状态诊断网络模型.声波信号经小波去噪和小波包频带能量特征提取后,作为小波神经网络模型的输入特征向量,网络训练中采用具有全局优化能力的遗传算法动态修改网络结构和参数,避免了神经网络训练速度慢、容易陷入局部极值的缺点,从而完成数据挖掘和复杂的非线性建模功能.结果表明,将网络模型用于熔透状态诊断,证实了方案的可行性和有效性.A network model for penetration state diagnosis based on the signal characteristics of arc sound in MIG welding is developed by recombining and improving artificial neural network,wavelet transform,and genetic algorithm.The arc sound signals,which are denoised by using wavelet transform and extracted by the frequency-band energy characteristics via wavelet packet decomposition and reconstruction,are used as the input eigenvectors of the wavelet neural network model,the genetic algorithm which has the ability of global optimization is adopted to dynamically modify the network structure and parameters and eliminate the rate tardiness of neural network training and relapse into local extremum,and then the complex nonlinear modeling and data mining are accomplished.The penetration state diagnosis result of the trained network model verifies the feasibility and validity of the modeling methods.

关 键 词:小波变换 神经网络 遗传算法 熔透 模式识别 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象