Well-posedness and Stability for an Elliptic-parabolic Free Boundary Problem Modeling the Growth of Multi-layer Tumors  

Well-posedness and Stability for an Elliptic-parabolic Free Boundary Problem Modeling the Growth of Multi-layer Tumors

在线阅读下载全文

作  者:Xiu-mei Hou Shang-bin Cui 

机构地区:[1]Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

出  处:《Acta Mathematicae Applicatae Sinica》2009年第4期547-560,共14页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.10771223);a fund in Sun Yat-Sen University

摘  要:In this paper we study a free boundary problem modeling the growth of multi-layer tumors. This free boundary problem contains one parabolic equation and one elliptic equation, defined on an unbounded domain in R2 of the form 0 〈 y 〈p(x,t), where p(x,t) is an unknown function. Unlike previous works on this tumor model where unknown functions are assumed to be periodic and only elliptic equations are evolved in the model, in this paper we consider the case where unknown functions are not periodic functions and both elliptic and parabolic equations appear in the model. It turns out that this problem is more difficult to analyze rigorously. We first prove that this problem is locally well-posed in little H61der spaces. Next we investigate asymptotic behavior of the solution. By using the principle of linearized stability, we prove that if the surface tension coefficient y is larger than a threshold value y〉0, then the unique flat equilibrium is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficiently small.In this paper we study a free boundary problem modeling the growth of multi-layer tumors. This free boundary problem contains one parabolic equation and one elliptic equation, defined on an unbounded domain in R2 of the form 0 〈 y 〈p(x,t), where p(x,t) is an unknown function. Unlike previous works on this tumor model where unknown functions are assumed to be periodic and only elliptic equations are evolved in the model, in this paper we consider the case where unknown functions are not periodic functions and both elliptic and parabolic equations appear in the model. It turns out that this problem is more difficult to analyze rigorously. We first prove that this problem is locally well-posed in little H61der spaces. Next we investigate asymptotic behavior of the solution. By using the principle of linearized stability, we prove that if the surface tension coefficient y is larger than a threshold value y〉0, then the unique flat equilibrium is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficiently small.

关 键 词:Free boundary problem multi-layer tumors WELL-POSEDNESS asymptotic behavior 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象