检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
出 处:《Acta Mathematicae Applicatae Sinica》2009年第4期547-560,共14页应用数学学报(英文版)
基 金:Supported by the National Natural Science Foundation of China(No.10771223);a fund in Sun Yat-Sen University
摘 要:In this paper we study a free boundary problem modeling the growth of multi-layer tumors. This free boundary problem contains one parabolic equation and one elliptic equation, defined on an unbounded domain in R2 of the form 0 〈 y 〈p(x,t), where p(x,t) is an unknown function. Unlike previous works on this tumor model where unknown functions are assumed to be periodic and only elliptic equations are evolved in the model, in this paper we consider the case where unknown functions are not periodic functions and both elliptic and parabolic equations appear in the model. It turns out that this problem is more difficult to analyze rigorously. We first prove that this problem is locally well-posed in little H61der spaces. Next we investigate asymptotic behavior of the solution. By using the principle of linearized stability, we prove that if the surface tension coefficient y is larger than a threshold value y〉0, then the unique flat equilibrium is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficiently small.In this paper we study a free boundary problem modeling the growth of multi-layer tumors. This free boundary problem contains one parabolic equation and one elliptic equation, defined on an unbounded domain in R2 of the form 0 〈 y 〈p(x,t), where p(x,t) is an unknown function. Unlike previous works on this tumor model where unknown functions are assumed to be periodic and only elliptic equations are evolved in the model, in this paper we consider the case where unknown functions are not periodic functions and both elliptic and parabolic equations appear in the model. It turns out that this problem is more difficult to analyze rigorously. We first prove that this problem is locally well-posed in little H61der spaces. Next we investigate asymptotic behavior of the solution. By using the principle of linearized stability, we prove that if the surface tension coefficient y is larger than a threshold value y〉0, then the unique flat equilibrium is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficiently small.
关 键 词:Free boundary problem multi-layer tumors WELL-POSEDNESS asymptotic behavior
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158