Cotorsion Pair Extensions  

Cotorsion Pair Extensions

在线阅读下载全文

作  者:De Xu ZHOU 

机构地区:[1]Department of Mathematics, Fujian Normal University, Fuzhou 350007, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第9期1567-1582,共16页数学学报(英文版)

基  金:Supported by Natural Science Foundation of China (Grant No. A0324656);Natural Science Foundation of Fujian Province (Grant No. 2009J01003);Scientific Research Foundation of Fujian Provincial Department of Science and Technology (Grant No. 2007F5038);Foundation of Fujian Normal University (Grant Nos. 2008100209, 09A004)

摘  要:Assume that S is an almost excellent extension of R. Using functors HomR(S,-) and -×R S, we establish some connections between classes of modules lR and lS, cotorsion pairs (AR, BR) and (AS, BS). If lS is a T-extension or (and) H-extension of lR, we show that lS is a (resp., monomorphic, epimorphic, special) preenveloping class if and only if so is lR. If (AS, BS) is a TH- extension of (AR, BR), we obtain that (AS, BS) is complete (resp., of finite type, of cofinite type, hereditary, perfect, n-tilting) if and only if so is (AR, BR).Assume that S is an almost excellent extension of R. Using functors HomR(S,-) and -×R S, we establish some connections between classes of modules lR and lS, cotorsion pairs (AR, BR) and (AS, BS). If lS is a T-extension or (and) H-extension of lR, we show that lS is a (resp., monomorphic, epimorphic, special) preenveloping class if and only if so is lR. If (AS, BS) is a TH- extension of (AR, BR), we obtain that (AS, BS) is complete (resp., of finite type, of cofinite type, hereditary, perfect, n-tilting) if and only if so is (AR, BR).

关 键 词:cotorsion pair ring extension preenveloping class 

分 类 号:O153.3[理学—数学] S663.1[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象