检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国医学科学院北京协和医学院生物医学工程研究所,天津300192
出 处:《国际生物医学工程杂志》2009年第4期197-200,I0001,共5页International Journal of Biomedical Engineering
基 金:基金项目:天津市自然科学基金资助项目(08JCYBJC14100)
摘 要:目的针对全身阻抗测量方法和传统分段阻抗测量法存在的问题,优化生物电阻抗人体成分分析(BIA)的分段模型,研制基于新模型的测量系统,进行初步实验。方法分析人体胸部和腹部对脂肪测量的不同影响,提出新的躯干细分模型;对新模型进行理论分析,构建基于躯干细分模型BIA系统,进行多层螺旋CT(MSCT)法与新方法的人体成分测量对照实验。结果以人体躯干部分为检测重点,基于躯干细分模型的BIA法能有效区分躯干上段和下段的阻抗值,从而得到人体的胸部和腹部脂肪含量。2种方法的对照试验结果显示出良好的相关性。结论基于躯干细分模型的新方法,弥补了全身和传统5段分段法的缺陷,是对传统人体成分分析方法的有效改进,更符合临床上人体成分测量的要求和目标,更具生理学意义。Objective Taking account of the deficiency in whole body impedance measurement and in the traditional segment measurement, an optimization towards bioelectrical impedance segmental model is developed, then a system based on the new model is designed and preliminary experiment is carried out. Methods A trunk subdivision model was proposed to avoid the undesirable effect from thorax and abdominal cavity on fat t. The new model-based measuring system was established. In addition, the result of the experiment based on trunk subdivision Bio-Irnpedance Analysis (BIA) method was compared to the result obtained via Multi-slice Spiral Computer Tomography(MSCT). Results Focusing on trunk detection, the trunk subdivision BIA is able to distinguish the impedance of upper segment (thorax) and the impedance of lower segment (abdominal cavity). With the utilization of the impedance, the fat content of thorax and abdominal cavity can be calculated. Furthermore, the comparison results of the two methods above show excellent correlation. Conclusion The novel method is a good remedy to whole body model method and the traditional segment BIA (SBIA) method. It is an effective improvement in body composition analysis, well meets the requirements and purpose of body compot and more physiologically meaningful.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.7.205