检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学西北水资源与环境生态教育部重点实验室,西安710048 [2]西安电子科技大学发展规划处,西安710071
出 处:《计算机工程》2009年第17期14-18,共5页Computer Engineering
基 金:国家"863"计划基金资助项目(2006AA01A126);国家自然科学基金资助项目(50279041)
摘 要:为克服准遗传算法收敛速度慢、早熟收敛等缺点,提出一种方向自学习遗传算法,该算法在局部搜索中引入方向信息,利用函数的伪梯度来指导搜索方向。算法通过个体之间的竞争、合作与学习来不断更新最优个体,为增加种群的多样性提出一种消亡算子,避免早熟收敛,提高算法收敛速度。采用4个二维函数和多个无约束高维函数对算法进行测试,与3个新提出的算法进行比较,实验数据和理论分析表明,该算法在解的质量上和计算复杂度上都优于上述3个算法,充分证明该算法的有效性。In order to overcome the disadvantages of classical genetic algorithm of low convergence speed and avoid prematnrity, this paper proposes an improved Genetic Algorithm of Directional Self-Learning(DSLGA). The directional information is introduced in local search process of the self-learning operator. And the search direction is guided by the false derivative of the function fitness. By the competition, cooperation and learning among the individuals, best solution is updated continuously. And a deletion operator is proposed to increase diversity. So the prematurity is avoided. In experiments, DSLGA is tested by four bi-dimension functions and three unconstrained benchmark problems, and the results are compared with CGA, MGA, FEP and OGA/Q. It shows that DSLGA performs much better than the above algorithms both in quality of solutions and in computational complexity. So the validity of the algorithm is obvious.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.64