核不相关辨别子空间雷达目标一维像识别  被引量:2

Kernel Uncorrelated Discriminant Subspace Algorithm for Recognition of Radar Target Range Profiles

在线阅读下载全文

作  者:刘华林[1] 王宗全[1] 

机构地区:[1]中国兵器装备集团火控技术中心,四川成都611731

出  处:《雷达科学与技术》2009年第4期262-266,共5页Radar Science and Technology

基  金:国家自然科学基金(No.60702070)

摘  要:针对不相关辨别分析方法在目标类别数较多时计算量大,且可能面临散度矩阵奇异的问题,提出了一种核不相关辨别子空间算法,并将其用于雷达目标一维距离像识别。新算法继承了原方法提取目标统计不相关辨别特征的优点,同时利用核机器学习理论与广义奇异值分解,有效解决了计算量与矩阵奇异的问题,并进一步改善了目标的类可分性。对ISAR实测飞机数据进行了分类,并与几种经典核非线性方法进行了比较,结果表明所提方法的识别性能得到了明显改善。Uncorrelated discriminant analysis(UDA) often suffers from the computational cost problem and the singular problem of scatter matrices. To address these problems, a novel algorithm, namely kernel uncorrelated discriminant subspace(KUDS), is proposed and applied in recognition of radar target range profiles. The new algorithm inherits the advantage of extracting statistically uncorrelated discriminant feature. Meanwhile, by utilizing the kernel trick and generalized singular value decomposition(GSVD), it effectively overcomes the limitations of computational cost and singularity and further improves the class separability. Experiments on measured ISAR data are evaluated together with a comparison to several classical kernel nonlinear methods. The results show that the classification performance of the proposed method is encouraged.

关 键 词:雷达目标识别 核不相关辨别子空间 广义奇异值分解 一维距离像 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象